PENTOMINOS Infrequently Asked Questions (iFAQ) Question: What are pentominos? Answer: Pentominos are a special case of the class of shapes called polyominos. A polyomino of order n is a shape which can be made from n squares, stuck together with edges coinciding and no overlapping. A polyomino which is the same as another polyomino except that it is rotated or reflected is counted as the same. Pentominos are polyominos of order 5. There are 12 pentominos: Ú¿ Ú¿ Ú¿ Ú¿ Ú¿ ³³Ú¿Ú¿Ú¿ Ú¿ ÚÄ¿ ÚÄÄ¿³³ ³³ ³³ ÚÄ¿ ÚÄ¿ ÚÙÀ¿³³³ÀÙ³³³ ³À¿ À¿³ À¿ÚÙ³³ ³À¿³À¿À¿À¿³ ³ À¿ÚÙ³³ÀÄÄÙ³ÀÄ¿À¿À¿ ³À¿ ³³ ³À¿³ÚÙÀ¿³ ³ÚÙ³ÚÙ ÀÙ ³³ ÀÄÄÙ ÀÄÙ ÀÄÙ ÀÙ ÀÄÙÀÙ ÀÙ ÀÙ ÀÙ ÀÙ Also known by their letters: X I U V W Z T L Y S F P These can be arranged in many ways, as a jigsaw puzzle. As each of the 12 pentominos has 5 squares, there are 60 (=5x12) squares, which can be arranged as a rectangle of 10x6 squares, 12x5 squares, 15x4 squares or 20x3 squares. Note that 30x2 squares is not suitable because some of the pieces are 3 squares high however they are rotated. Note that the 5 tetrominos (4th order polyominos) have no rectangular solutions, and are rather boring (although there is an interesting computer game based on the 7 tetroids, which are the same as tetrominos except that reflections are counted as different). There are 35 hexominos, which makes for extremely long and complicated puzzles. Hence 5th order is the optimum size for polyomino puzzles. Question: Apart from the rectangular solutions already described, what other pentomino puzzles are there? Answer: (I am not certain that solutions to the following puzzles exist) By using n of the 12 pieces (12>n>2) you can make a 5xn rectangle. Using 9 pieces you can make a 3x15 rectangle. Using 8 pieces you can make a 10x4 rectangle. Using 6 pieces you can make a 10x3 rectangle. Using nine pieces, you can make "scale models" of each of the pentominos three times as large as the originals. Using only four pieces, ten of the pentominos can be made at twice the original size. If the pentominos are made three dimensional, i.e. made out of 1x1x1 cubes instead of 1x1 squares, there are 3 cuboid puzzles: 3x4x5, 2x5x6, 2x3x10. If you use 10 pieces, you can make a 2x5x5 cuboid. If you use 9 pieces, you can make a 3x3x5 cuboid. If you use 8 pieces, you can make a 2x4x5 cuboid. If you use 6 pieces, you can make a 2x3x5 cuboid. Using 8 pieces, you can make double size scale models of your 3D pentominos. If you are extremely clever, or happen to belong to a higher space, you may be able to arrange the pentominos into a 2x2x3x5 hypercuboid. The only other solutions (in 2D) involve making stretched versions of the scale models of the pentominos, 2xscale models of decominos (10th order polyominos) and pentadecominos (15th order polyominos), stretched versions of the decomino scale models, and using n pieces, 5n-ominos (this is the most general class of puzzle). However, because these puzzles have so many variations I don't think that they are very interesting. You could also try playing pentominoes on other surfaces, such as a torus, Mobius strip or Klein bottle. Question: How many rectangular solutions are there which use all the pieces? Answer: 10x6: 2339 solutions 12x5: 1010 solutions 14x4: 368 solutions 20x3: 2 solutions Total: 3719 solutions (not counting rotations and reflections) Question: Which shapes appear most often between the prongs of the Ú¿Ú¿ shape in the solutions of 10x6 pentominos? ³ÀÙ³ ÀÄÄÙ Answer: 10x6 12x5 15x4 20x3 Total Ú¿ ÚÙÀ¿ 1226 (52.42%) 462 (45.74%) 210 (57.07%) 2 (100.00%) 1900 (51.09%) À¿Ú´ ÚÁÙ³ 345 (14.75%) 138 (13.66%) 93 (25.27%) 0 ( 0.00%) 576 (15.49%) À¿Ú´ ÚÁÙÀ¿ 221 ( 9.45%) 65 ( 6.44%) 13 ( 3.53%) 0 ( 0.00%) 299 ( 8.04%) ÀÄÂÄ´ ÚÄÙÚ´ 194 ( 8.29%) 78 ( 7.72%) 12 ( 3.26%) 0 ( 0.00%) 284 ( 7.64%) ÀÂÄÙ³ 113 ( 4.83%) 74 ( 7.33%) 2 ( 0.54%) 0 ( 0.00%) 189 ( 5.08%) ³ÚÄ´ ÃÙÚÙ 66 ( 2.82%) 66 ( 6.53%) 6 ( 1.63%) 0 ( 0.00%) 138 ( 3.71%) ³Ú´ ÚÁÙÿ 70 ( 2.99%) 44 ( 4.36%) 23 ( 6.25%) 0 ( 0.00%) 137 ( 3.68%) ÀÄ¿³³ 57 ( 2.44%) 45 ( 4.46%) 0 ( 0.00%) 0 ( 0.00%) 102 ( 2.74%) ÚÁÙ³ ÚÁÂÄÙ ³ À¿ 40 ( 1.71%) 29 ( 2.87%) 9 ( 2.45%) 0 ( 0.00%) 78 ( 2.10%) ÃÄÄÙ³ 7 ( 0.30%) 9 ( 0.89%) 0 ( 0.00%) 0 ( 0.00%) 16 ( 0.43%) ÃÄÄÄÁ¿ ÀÄÄÄÄÙ 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) 0 ( 0.00%) Question: How many solutions are there in which the ÚÄÄÄÄ¿ piece does not touch any of ÀÄÄÄÄÙ the sides? Answer: For 10x6 solutions, there are 11: ÚÄÂÂÄÄÂÄÂÄ¿ÚÄÂÂÄÂÄÄÂÄ¿ÚÄÂÄÂÂÄÄÂÄ¿ÚÄÂÂÄÄÂÄÂÄ¿ÚÄÂÂÄÂÄÄÂÄ¿ÚÄÂÄÂÂÄÄÂÄ¿ ³ÚÙÀ¿ÚÙÚÙÚ´³ÚÙÀ¿À¿ÚÙÚ´³ÚÙÚÙÀ¿ÚÙÚ´³ÚÙÀ¿ÚÙÚ´ ³³ÚÙÀ¿À¿Ú´ ³³ÚÙÚÙÀ¿Ú´ ³ ³À¿Ú´Ã¿³ÚÙ³³À¿Ú´Ú´³ÚÙ³³À¿Ã¿Ú´³ÚÙ³³À¿Ú´Ã¿³À¿³³À¿Ú´Ú´³À¿³³À¿Ã¿Ú´³À¿³ ÃÂÁÙÃÙÀÁ´ ³ÃÂÁÙÃÙÀÁ´ ³ÃÂÁÙÃÙÀÁ´ ³ÃÂÁÙÃÙÀÁ¿À´ÃÂÁÙÃÙÀÁ¿À´ÃÂÁÙÃÙÀÁ¿À´ ³³ÚÄÅÄÄÄÁ´³³ÚÄÅÄÄÄÁ´³³ÚÄÅÄÄÄÁ´³³ÚÄÅÄÄÄÁ´³³ÚÄÅÄÄÄÁ´³³ÚÄÅÄÄÄÁ´ ³ÀÁ¿ÀÄÂÄÄÙ³³ÀÁ¿ÀÄÂÄÄÙ³³ÀÁ¿ÀÄÂÄÄÙ³³ÀÁ¿ÀÄÂÄÄÙ³³ÀÁ¿ÀÄÂÄÄÙ³³ÀÁ¿ÀÄÂÄÄÙ³ ÀÄÄÁÄÄÁÄÄÄÙÀÄÄÁÄÄÁÄÄÄÙÀÄÄÁÄÄÁÄÄÄÙÀÄÄÁÄÄÁÄÄÄÙÀÄÄÁÄÄÁÄÄÄÙÀÄÄÁÄÄÁÄÄÄÙ ÚÄÄÂÄÄÂÄÄ¿ÚÄÄÂÄÄÂÄÄ¿ÚÄÄÂÄÄÂÄÄ¿ÚÄÄÂÄÄÂÄÄ¿ ³Ú¿Ã¿ ÿÚÙ³³Ú¿Ã¿ ÿÚÙ³³Ú¿Ã¿ ÿÚÙ³³Ú¿Ã¿ ÿÚÙ³ ÃÙÀ´ÀÂÙ³³Ú´ÃÙÀ´ÀÂٳÿ³ÃÙÃÙÀÂÙ³³Ú´ÃÙÃÙÀÂٳÿ³ ÿÚÙÚÙÚÁ´³³Ã¿ÚÙÚÙÚÁ´³³Ã¿À¿ÚÙÚÁ´³³Ã¿À¿ÚÙÚÁ´³³ ³ÃÁÄÁÄÅ¿ÃÙ³³ÃÁÄÁÄÅ¿³À´³ÃÄÁÁÄÅ¿ÃÙ³³ÃÄÁÁÄÅ¿³À´ ³ÀÄÂÄÄÙ³À¿³³ÀÄÂÄÄÙ³À¿³³ÀÄÂÄÄÙ³À¿³³ÀÄÂÄÄÙ³À¿³ ÀÄÄÁÄÄÄÁÄÁÙÀÄÄÁÄÄÄÁÄÁÙÀÄÄÁÄÄÄÁÄÁÙÀÄÄÁÄÄÄÁÄÁÙ ÚÄÄÂÂÄÄÄ¿ ³Ú¿³À¿ÚÄÙ³³ ÃÙÀÅ¿À´ÚÄÙ³ ÿÚÙÃÄÁÁÄ´ ³ÀÅ¿ÀÂÄÂÄÙ³ ³ ³ÀÄÁ¿ÀÄ¿³ ÀÄÁÄÄÄÁÄÄÁÙ There is one 12x5 solution: ÚÄÂÂÄÄÂÄÂÂÄÄ¿ ³ÚÙÀ¿ÚÙÚ´ÀÄ¿³ ³À¿Ú´³ÚÙÀÄ¿³³ ÃÄÅÙÃÁÅÄÄÄÁÅ´ ³ À¿À¿ÀÄÂÄÄÙ³ ÀÄÄÁÄÁÄÄÁÄÄÄÙ There are no 15x4 solutions or 20x3 solutions with this property. Question: What is an isomorphism set, and how many isomorphism sets of each size are there? Answer: For the purposes of this document, two solutions are isomorphic if a subset of the pieces can be rotated or reflected to give a different solution. For example, the only two solutions to 20x3 pentominos are isomorphic, because one can be transformed to the other by rotating a central 7-piece section (LSFTWYZ) (or, alternatively, switching the end pieces UXPIL and V over): ÚÄÂÂÄÄÄÄÂÄÄÂÂÂÂÄÄÄ¿ ÚÄÂÂÄÄÄÄÂÂÄÂÄÄÂÂÄÄÄ¿ ³ÚÙÀÂÄÂÂÙÚÄÙ³³À¿ÚÄÙ³³ ³ÚÙÀÂÄÂÄÙÿÀ¿ÚÙÀÂÄ¿³³ ³À¿ÚÙ ³ÀÄÁ¿ÚÙÀ¿À´ÚÄÙ³ ³À¿ÚÙ ³ÚÄÙÀ¿³³ÚÄÙÚÁÙ³ ÀÄÁÁÄÄÁÄÄÄÁÁÄÄÁÄÁÁÄÄÙ ÀÄÁÁÄÄÁÁÄÄÄÁÁÁÁÄÄÁÄÄÙ Again, for the purposes of this document, the isomorphism set of a given solution is the set of solutions which can be made by rotating and reflecting subsets of pieces, including the original solution. Note that a solution which takes several rotations and/or reflections to transform it to the original solutions is also included. Hence, isomorphism sets are discrete - the isomorphism set does not depend on which of the solutions in the set you start with. In the solutions of 10x6 pentominos, isomorphism sets of sizes 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 18, 24, 30 and 44 (ismorphism sets of sizes which are not powers of 2 occur because the subsets can be overlapped.) The isomorphism sets break down as follows (the table shows numbers of sets, not numbers of solutions): Size³10x6 ³12x5 ³15x4 ³20x3 ³Total ÄÄÄÄÅÄÄÄÄÄÅÄÄÄÄÄÅÄÄÄÄÄÅÄÄÄÄÄÅÄÄÄÄÄ 1 ³ 578 ³ 183 ³ 71 ³ 0 ³ 832 2 ³ 327 ³ 119 ³ 37 ³ 1 ³ 484 3 ³ 55 ³ 32 ³ 12 ³ 0 ³ 99 4 ³ 87 ³ 30 ³ 12 ³ 0 ³ 129 5 ³ 11 ³ 6 ³ 0 ³ 0 ³ 17 6 ³ 27 ³ 13 ³ 12 ³ 0 ³ 52 7 ³ 3 ³ 5 ³ 1 ³ 0 ³ 9 8 ³ 12 ³ 8 ³ 2 ³ 0 ³ 22 9 ³ 1 ³ 3 ³ 0 ³ 0 ³ 4 10 ³ 3 ³ 4 ³ 0 ³ 0 ³ 7 11 ³ 2 ³ 1 ³ 0 ³ 0 ³ 3 12 ³ 3 ³ 1 ³ 1 ³ 0 ³ 5 13 ³ 0 ³ 1 ³ 0 ³ 0 ³ 1 14 ³ 1 ³ 0 ³ 0 ³ 0 ³ 1 15 ³ 1 ³ 1 ³ 0 ³ 0 ³ 2 18 ³ 2 ³ 0 ³ 0 ³ 0 ³ 2 20 ³ 0 ³ 1 ³ 0 ³ 0 ³ 1 24 ³ 1 ³ 0 ³ 0 ³ 0 ³ 1 28 ³ 0 ³ 1 ³ 0 ³ 0 ³ 1 30 ³ 1 ³ 0 ³ 0 ³ 0 ³ 1 32 ³ 0 ³ 0 ³ 1 ³ 0 ³ 1 44 ³ 1 ³ 0 ³ 0 ³ 0 ³ 1 ÄÄÄÄÅÄÄÄÄÄÅÄÄÄÄÄÅÄÄÄÄÄÅÄÄÄÄÄÅÄÄÄÄÄ Tot ³1116 ³ 409 ³ 149 ³ 1 ³1675 Question: In 10x6 pentominos, are there any solutions with diagonal lines? Answer: Of course, because pentominos are made of squares, true diagonal lines are impossible, but you can get fairly close with some of the isomorphisms of this solution (shown here split in two for clarity): ÚÄÄÂÂÂÄÄÄÄ¿ ³Ú¿³³ÀÄÂÄÂÙ ÃÙÀ´³ÚÄÙÚÙ Ú¿ ÿڴÀÅÄÂÙ ÚÙ³ ³ÃÙÀÂÙÚÙ ÚÁ¿³ ³ÀÄ¿³ÚÙ ÚÁ¿³³ ÀÄÄÁÁÙ ÚÙ ³À´ ÀÄÄÁÄÙ Question: What is a 4-point, and how many solutions are there with each number of 4-points? Answer: For the purposes of this document, a 4-point is a point where 4 different pentominos meet, for example the pieces T, S, L and W in the answer to the last question (shown as Å in this file). The number of 4-points per solution is a number between 0 and 4 inclusive for 10x6 and 12x5 pentominos. The distribution is as follows: 4-points ³ 10x6 ³ 12x5 ³ 15x4 ³ 20x3 ³ Total ÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄ 0 ³ 563 ³ 325 ³ 238 ³ 2 ³ 1128 1 ³ 1102 ³ 487 ³ 117 ³ 0 ³ 1706 2 ³ 547 ³ 180 ³ 13 ³ 0 ³ 740 3 ³ 118 ³ 18 ³ 0 ³ 0 ³ 136 4 ³ 9 ³ 0 ³ 0 ³ 0 ³ 9 ÄÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄÅÄÄÄÄÄÄÄÄ Average ³ 1.11 ³ 0.89 ³ 0.39 ³ 0.00 ³ 0.98 Question: How can pentominos be extended? Answer: As mentioned above, there are 35 hexominos. This table gives numbers of polyominos: Order ³ Number ÄÄÄÄÄÄÅÄÄÄÄÄÄÄ 1 ³ 1 2 ³ 1 3 ³ 2 4 ³ 5 5 ³ 12 6 ³ 35 You might want to try using all the polyominos between two orders, for example the set of polyominos between orders 2 and 5 (inclusive) has 20 pieces with a total of 88 squares (making a nice 8x11 rectangle). The class of shapes made by sticking cubes together face-to-face are called polycubes. The 3D pentominos are a subset of the 5th order polycubes or pentacubes. The following table gives the numbers of pentacubes: Order ³ Number ÄÄÄÄÄÄÅÄÄÄÄÄÄÄ 1 ³ 1 2 ³ 1 3 ³ 2 4 ³ 7 5 ³ 23 Because 5x23 does not decompose into a cuboid (both 5 and 23 being prime) it may be better to count mirror-image reflections as different. If this is done the following table is obtained. These are chiral polycubes: Order ³ Number ÄÄÄÄÄÄÅÄÄÄÄÄÄÄ 1 ³ 1 2 ³ 1 3 ³ 2 4 ³ 8 5 ³ 30 Returning to two dimensions for a moment, we are not limited to squares. We could use rectangles of the same size and shape (rotational symmetry order 2), triangles (rotational symmetry order 3) or hexagons (rotational symmetry order 6). There are many shapes and sizes of solution to these puzzles. I am not sure if shapes other than cubes can be used in 3 dimensions. Of course, there is no need to stick to two or three dimensions, shapes of four or even more dimensions could be used, however this could cause visualisation problems.